The Lancet Respiratory Medicine

The role of CT in case ascertainment and management of COV-19 pneumonia in the United Kingdom: insights from high-incidence regions --Manuscript Draft--

Manuscript Number:	thelancetrm-D-20-00341
Article Type:	Comment
Keywords:	coronavirus; COVID-19 pneumonia; CT
Corresponding Author:	Felix Chua, Ph.D. Royal Brompton and Harefield NHS Foundation Trust London, UNITED KINGDOM
First Author:	Felix Chua, Ph.D.
Order of Authors:	Felix Chua, Ph.D.
	Darius Armstrong-James
	Sujal Desai
	Joseph Barnett
	Vasileios Kouranos
	Onn Min Kon
	Ricardo José
	Rama Vancheeswaran
	Michael Loebinger
	Maria Teresa Cutino-Moguel
	Cliff Morgan
	Stephane Ledot
	Boris Lams
	Wing Ho Yip
	Leski Li
	Ying Cheong Lee
	Adrian Draper
	Sze Shyang Kho
	Elisabetta Renzoni
	Katie Ward
	Jimstan Periselneris
	Sisa Grubnic
	Marc Lipman
	Athol Wells
	Anand Devaraj
Manuscript Region of Origin:	UNITED KINGDOM

The role of CT in case ascertainment and management of COV-19 pneumonia in the United Kingdom: insights from high-incidence regions

Chua F^{1a}, Armstrong-James D^{1b}, Desai SR^{1c}, Barnett J^{2a}, Kouranos V^{1a}, Kon OM³, José R^{1d}, Vancheeswaran R⁴, Loebinger MR^{1d}, Wong J^{1e}, Cutino Moguel MT⁵, Morgan C^{1f}, Ledot S^{1f}, Lams B⁶, Yip WH⁷, Li SK⁸, Lee YC⁸, Draper A^{9a}, Kho SS¹⁰, Renzoni E^{1a}, Ward K¹¹, Periselneris J¹², Grubnic S^{9b}, Lipman M^{2b}, Wells AU^{1a}, Devaraj A^{1c}

- 1 The Royal Brompton Hospital, Royal Brompton & Harefield NHS Foundation Trust
 - a Respiratory Medicine (Interstitial Lung Disease)
 - b Infectious Disease & Medical Mycology
 - c Radiology
 - d Respiratory Medicine (Host Defence Unit)
 - e Cardiology (Imaging, Harefield Hospital)
 - f Critical Care and Anaesthesia
- 2 The Royal Free London NHS Foundation Trust
 - a Radiology
 - b Respiratory Medicine
- 3 St Mary's Hospital, Imperial College Healthcare NHS Trust (Respiratory Medicine)
- 4 West Hertfordshire Hospitals NHS Trust (Integrated Respiratory Medicine)
- 5 Barts Health NHS Trust (Virology)
- 6 Guy's and St Thomas' NHS Foundation Trust (Respiratory Medicine and ICU)
- 7 Prince of Wales Hospital, Hong Kong SAR (Respiratory Medicine)
- 8 Princess Margaret Hospital, Hong Kong SAR (Radiology)
- 9 St George's University Hospitals NHS Foundation Trust a Respiratory Medicine
 - b Radiology
- 10 Sarawak General Hospital, Malaysia
- 11 Hammersmith Hospital, Imperial College Healthcare NHS Trust
- 12 King's College Hospital NHS Foundation Trust

Corresponding author: Dr Felix Chua Consultant in Respiratory Medicine Royal Brompton Hospital London SW3 6NP

Email: <u>F.chua@rbht.nhs.uk</u> Tel: 020 7351 8018 COVID-19 is the seventh pathogenic human coronavirus to be identified and the third – after SARS-CoV and MERS-CoV – with a predilection for causing potentially fatal pneumonia. COVID-19 infection is highly transmissible but has a relatively low death rate (1.0 - 3.5%) except in elderly persons with co-morbidities.^{1,2} It is estimated that 15 - 20% of those infected develop severe pneumonia and 5 - 10% require critical care.²

COVID-19 preparedness in countries with a surge in new cases have prioritized containment, rapid diagnosis and fastidious contact tracing. With sustained community transmission, realtime reverse transcriptase polymerase chain reaction (rRT-PCR) of viral nucleic acid may be supplanted by more versatile diagnostic tools because false negative results have been a concern. The recent change in diagnostic criteria in China to include computed tomography (CT) was driven by a sustained daily increase in new cases. With its short turnaround time and wide availability, CT imaging is expected to dominate in large-scale COVID-19 case ascertainment. The lower sensitivity of plain chest radiography will limit its role in diagnosing COVID-19 pneumonia.

CT abnormalities may predate rRT-PCR positivity in symptomatic patients, and in those without symptoms who subsequently test positive by rRT-PCR.^{3,4,5} A role for CT in early diagnosis of COVID-19 infection seems likely. Against this, albeit in the minority, cases with positive rRT-PCR but normal CT (likely representing very early infection) are recognised; of 36 patients scanned within the first two days of symptoms, CT was normal in half despite the majority (>90%) being rRT-PCR positive.⁶

The commonest CT features reported in COVID-19 pneumonia are bilateral, sub-pleural areas of ground-glass opacification (GGO) and/or consolidation affecting the lower lobes.^{3,6-8} Foci of abnormality may be well-demarcated, sometimes with a 'rounded' configuration.^{3,5,7,9,10} In the intermediate phase of infection (4 - 14 days from symptom onset), a 'crazy-paving' pattern may be seen. Other CT findings (e.g. a tree-in-bud pattern, nodules, cysts, cavitation and large volume lymphadenopathy) are uncommon. Differences in the frequency of individual features between pneumonia caused by COVID-19 and other viruses have yet to be studied.

Several aspects of the utility of CT in COVID-19 infection are worth noting:

CT findings in asymptomatic (pre-clinical) patients

In one study, GGO was evident in nearly all of 15 asymptomatic (but rRT-PCR positive) cases who had been in close contact with COVID-19 confirmed patients.² The extent of pulmonary involvement, defined as affected lung segments, was less than in the symptomatic group and more frequently unilateral.

CT abnormalities in survivors of COVID-19 pneumonia

Pan and colleagues, employing serial CTs, described the radiological time course of 21 patients with confirmed mild-to-moderate infection who survived to discharge.⁹ 'Peak' radiological abnormalities occurred at around day 10, followed by gradual regression starting two weeks after symptom onset. In a separate analysis, Ai and colleagues reported radiological improvement predating rRT-PCR becoming negative in 42% (24/57) of patients recovering from COVID-19 pneumonia.³

Comparative sensitivity of CT against rRT-PCR

Two studies have specifically compared the performance of CT and RT-PCR: in a cohort of just over 1000 cases, the diagnostic sensitivity, positive and negative predictive value of CT was reported as 97%, 65% and 83% respectively.³ CT was abnormal in 75% (308/413) of those with a negative first rRT-PCR but clinically felt to likely (48%) or probably (33%) have COVID-19 pneumonia. A comparable CT sensitivity of 98% (vs 71% for rRT-PCR; P <0.001) was concluded in a smaller study of 51 cases where just under a third tested negative on the initial rRT-PCR.¹⁰

Individuals with pre-existing lung disease

There are few descriptions of COVID-19 pneumonia in individuals with pre-morbid pulmonary conditions. Shi and colleagues reported that 9/81 of confirmed cases had underlying lung disease although the specific details are not known.⁴ The potential impact of

COVID-19 pneumonia on patients with established respiratory conditions remains unclear at this time.

CT is likely to become increasingly important for the diagnosis of COVID-19 pneumonia given the continuing rise in global cases. The observed evolution from pneumonic injury to respiratory death in this disease suggests a pathologic pathway that might be amenable to early CT detection, particularly if the patient is scanned 2 or more days after developing symptoms. Put simply, a negative CT at one week is highly likely to exclude COVID-19 pneumonia. The prognostic value of CT would be further enhanced if it was able to define early radiological abnormalities or patterns that portend a worse outcome. We propose that a practical algorithm for diagnosing COVID-19 pneumonia should combine detailed clinical history, baseline and repeat contiguous CT (the interval depending on clinical circumstances) and rRT-PCR for COVID-19 and other viruses in nasal and throat swabs.

References

- World Health Organization. Who Director-General's opening remarks at the media briefing on COVID-19. 3 March 2020. <u>https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid-19---3-march-2020</u>
- Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, on behalf of the Chinese Centre for Disease Control and Prevention. The Epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) – China, 2020. CCDC Weekly 2020; 2(8): 113-22.
- Ai T, Yang Z, Hou H, Zhan C, Chen C, Lu W, Tao Q, Sun Z and Xia L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. *Radiology* 2020. doi: 10.1148/radiol.2020200642
- Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y and Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. *Lancet Infect Dis* 2020. doi: 10.1016/51473-3099(20)30086-4

- Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. *Radiology* 2020. <u>doi:</u> <u>10.1148/radiol.2020200343</u>.
- Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X and Li K, Li S, Shan H, Jacobi A and Chung M. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. *Radiology* 2020. doi: <u>10.1148/radiol.2020200463</u>
- Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Cui J, Xu W, Yang Y, Fayad Z, Jacobi A, Li K, Li S and Shan H. CT imaging features of 2019 novel coronavirus (2019-nCoV). *Radiology* 2020. doi: 10.1148/radiol.2020200230
- Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essentials for radiologists on COVID-19: an update – *Radiology* Scientific Expert Panel. *Radiology* 2020. doi: <u>10.1148/radiol.2020200527</u>
- Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, Wang J, Hesketh R and Yang L. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. *Radiology* 2020. doi: <u>10.1148/radiol.2020200370</u>
- Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P and Ji W. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. *Radiology* 2020. doi: 0.1148/radiol.2020200432